Innovation for Our Energy Future

Effects of Biodiesel on NO_x Emissions

Bob McCormick
National Renewable Energy Laboratory
Golden, Colorado

ARB Biodiesel Workgroup

June 8, 2005

Advantages of Biodiesel

Inherent advantages of diesel engines:

- •Up to 40% (or even higher) improved efficiency relative to gasoline
- Inherently very low hydrocarbon emissions (both tailpipe and evaporative)

B20 Blends:

- Reduce life-cycle petroleum consumption by 19%
- •Reduce life-cycle CO₂ emissions by 16%
- Further reduce hydrocarbon emissions by 20%
- Reductions in PM emissions

Biodiesel's Effect on Emissions – Older Engines

EPA analysis:

- data from many studies
- engine modelsthrough 1997
- $\cdot NO_x$
 - No change for B5
 - •2% up for B20
 - •10% up for B100
- •PM
 - •5% down for B5
 - •12% down for B20
 - •48% down for B100

Biodiesel's Effect on NO_x Emissions -Engine Data

Typical Older Engines (thru 1997): B20 = +2%, B100 = +10%Newer Engines (2004 compliant): B20 = +4%, B100 = +30%

NO_x Reduction Strategies

Injection timing retard:

- Can eliminate NO_x increase for pre-1998 engines
- Reduces or eliminates PM benefit
- Can reduce fuel economy
- Requires engine certified on and dedicated to biodiesel

Graboski & McCormick, Progress in Energy and Combustion Science, 24 125 (1998).

Cetane increasing additives

Use of more highly saturated biodiesel

Cetane Additives for Reducing NO_x

For testing in older engines:

- Effective for soy B20
- •NO_x reductions significant at 95% confidence or greater
- No change in PM emissions or fuel economy

Cetane Additives for Reducing NO_x

No significant effect observed for B20 in 2004 emission standard engines

Effect of Biodiesel Composition on NO_x

Results for 1991 engine

- •NO_x emissions correlated with fuel unsaturation
- •NO_x varies by 1 g/bhp-h but energy consumption varies by less than 2%
- •Data from Environ. Sci. & Technol. 35 1742-1747 (2001),
- •DDC Series 60 engine (1991)
- •HD FTP
- B100 compared to LSD

Effect of Biodiesel Composition for Blends

NO_x emissions for B20 blends versus biodiesel Iodine Number:

- •NO_x neutrality at lodine Number of roughly 95
- •I.N. is typically >120 for soy
- Suggests blending of high and low I.N. fuels may be a strategy to eliminate the NO_x increase -older engines

Effect of Biodiesel Composition

Results for 2004 engines

Much smaller effect of degree of unsaturation

B100

B20

Comparison of Engine and Vehicle Emissions

- •EPA predictive model based on engine dyno data
- Results compared to vehicle (chassis dyno) results
- •On average, NO_x was reduced in vehicle test studies

Chassis Data Examples

Plot: Weaver, report to SCAQMD, November 2004.

Data:

Peterson and Reece, SAE Paper No. 961114. Taberski and Petersen, <u>BioEnergy '98, Expanding</u> <u>Bioenergy Partnerships</u>, available at www.biodiesel.org.

FIGURE 4. FTP NO $_x$ emissions. All data are presented as the mean \pm twice the standard error. The 20% biodiesel blends are each denoted in the legend according to the biodiesel fuel used in the blend.

Durbin and Norbeck Environ. Sci. Technol. **2002**, 36,1686. Light-duty FTP test cycle for B20 blends of three biodiesels

General observation: very high power-to-weight vehicles, such that engine operation is at light load.

Speculate: biodiesel may reduce NO_x at lighter loads?

Biodiesel Bus Chassis Dynamometer Testing

- B20 vs. conventional diesel fuel
- 2 in-use buses tested (40,000 lb GVWR)
- City Suburban Heavy Vehicle Cycle (CSHVC) at 35,000 lb inertia
- Cummins ISM 2000 Engine No EGR
- Expected reductions (g/mile basis)
 - PM $\approx 24\%$
 - HC ≈ 40%
 - CO ≈ 32%
 - Fuel Economy ≈ 3%
- Unexpected reductions in NOx
 - 5% reduction
 - statistical confidence > 99%

Biodiesel Effect on NO_x Uncertainty

- Engine tests on average show NO_x increasing
 - •NO $_{\rm x}$ can go up or down depending on engine and test cycle this is not well understood fundamentally
 - •Finding of a NO_x increase is not based on testing of a representative sample of in-use engines
 - •Finding of NO_x increase is not based on a market share weighted average
- Vehicle tests on average show NO_x reductions
 - Very limited dataset
 - •Again, not based on representative sample or market share weighted average

Closing Remarks

- There is considerable uncertainty regarding biodiesels impact on NO_x emissions
- Additional research is required to fundamentally understand the cause of the NO_x increase and to understand why engine and chassis tests give directionally different results
- The main benefits of biodiesel use are reductions in petroleum consumption and greenhouse gas emissions

http://www.nrel.gov/vehiclesandfuels/npbf/publications.html

